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Theory and Weighting Strategies of Mixed Sensitivity
Hm Synthesis on a Class of Aerospace Applications ]

Richard Y. Chiang and Red Y. Hadaegh

Jet  P7sopulsion I.aboraiory, California lnstituic oj Yhchnology,

Abstract. This paper presents a vital design concept commonly
synthesis technique --- the Mixed Sensitivity  IIW optimization.

l’asadenu, CA 91109-6’09.9

used in the robust  Hm control
The underlying theory is also

explained in a straightforward fashion. Several real world aerospace design problems are solved via

this particular problem formulation. This simple approach provides control engineer a clean first

cut of many complicated aerospace control design issues, e.g., stability, performance and robustness
against frequency domain bounded unstructured uncertainty, etc. Only with this first  cut result

in hand, one can then move on to more ad van ccd synthesis technique such as K“j-S ynthesis  to
improve the systcm  parametric robustness, if necessary.

Key Workds. Robust control; H m weighting strategies; Aerospace applications

1. I N T R O D U C T I O N

For the past decade, robust control theory has made a
“quantum leap” on the design of precision control sys-
tems in the presence of large level of uncertainty. The
issues such as multivariable  stability margin, n~ulti-
channel  loopshaping, system robust stability and ro-
bust performance can be well formulated as one sound
and complete mathematical problem, where one only
needs to minimize the H@ norm of the input/output
channels regardless it is a synthesis or analysis de-
sign problem. Figure 1 shows the “Canonical robust
conlrol  pro blcm” setup,

In solving analysis problem, one can measure the
“size” of the transfer function matrix seen by the un-
certainty block(s) using the Hmnorm related tools
to assess the multivariable  stability margin. On the
other hand, in solving synthesis problem, one can se-
lect a set of proper weighting functions to address a
particular loop shape that ultimately takes care of the
‘(robustness” and “performance” design objectives in
one mathematical framework. The tools that can bc
utilized to achieve the latter objective are, for exam-
ple, 112, lImoPtin]ization,  and ~~-sy]tthcsis  procedure.
—

1 Submitter to IFAC, Symposium on Automatic Con-
trol in Aerospace, Sep. 12-16, 199,1, Palo Alto, G.

lIowever,  unlike the simple nature of “analysis” prob
lem, synthesizing a robust co][troller  that stabilizes a
plant (not necessarily a complicated one) with cer-
tain prescribed performance in the presence of all the
anticipated disturbance, uncertainty, noise, etc. is
absolutely a nontrivial task.

Mathematically, the Canonical Robust Control Prob-
km can be solved rM follows:

Given  a multiuariable  plant P(s), jind a stabil izing
controller F(s) such that the  C1OSCCLJOOP transjerjunc-
tion ljlul 9atisjles

Vv’vlul  ) = K;J(7J,”, (jw)) <1 (1)

where

Km(7~,  u1 ) ‘~’ i~f{6(A)ldet(1 - I’j, u, A )  = 0} ( 2 )

with A = riiag(Al, . . . . An).

From a robust control synthesis point of view, the
problem is to find a stabilizing F(s) to “shape” the
p(~jl”l ) function in the frequency domain. On the
other hand, from a robust control analysis point of

‘ ) func-view, the problem is to compute the K“, (TYI”,
tion, or its bounds. In general, t}iis robust control
formulation is capable of handling multi-channel and
multivariable  control problcm.
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First let’s examing K“, function’s upper bounds:

] ~ /4 TL/. ) < ;rllllWuD-71m  s llVdlm-——
J{”,

(3)

where D := {diag (dll, . ... d~l) I di > O} .

l’he inequality (3) implies that solving the “minimax”
Hmoptimization  problem

(4)

minimizes an upper bound on the quantity IL(q~u).
I)oyle proves that for 3 or less complex singular-value-
bounded uncertainty blocks, the first inequality be-
come exact equality.

‘2r---lu21u2
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Figtmc 1: I’he Canonical Robust Control Problcm

‘1’his paper catalogs a class of aerospace applications
solved by Hmmixed sensitivity minimization, and de-
scribes their weighting strategies in detail. The ap
p]ications  covered here are 1) fighter flight control
problcrn;  2) large space structure vibration suppres-
sion prob]cm;  3) spacecraft attitude control problem,
which are all related to the real-world design (not
textbook problem) in practice. With the guidelines
presented here and the examples of aerospace appli-
cations, robust control synthesis problem should no
longer be a mystery to engineers or theorists that are
ncw in this field.

2.

To

II”MIXED-SENSITIVITY A P P R O A C H

compute the Km function in our Canonical Ro-
bust Control  Problem setup is mathematically difficult
(requires nonlinear programming), but the synthe-
sis part of the problem can be C1OSC1Y approximated
via tllc so-called Jfired-Sensitivity 1’rob/cn]  setup (see
Figure 2).

Singular value is also an upper bound of K;]. It can
bc shown that in this H-mixed sensitivity setting, it
is is only 3 db different from the true K“, functicm.
This will be our main focus of solving the Canonical
Robust Control problem. I,et’s  start with the follow-
ing incclua]ity on the problcm  setup in Figure 2:

(5)
where S = (1 -E G1’)-l is the Sensitivity Function,

T = GI’(l+GF’)-l  is the Con~plentcntary  sensiti~’ity
Function, and clearly, S+- 7’=- 1.

Take the singular value decomposition of the first col-
umn of Tju

[ 1
wl s
W 3 T =

u~v”. (6)

and substitute back to 7j~ we obtain the following
upper-bound on K;’:

-+ ([ W1 s -Wls
m W3T 1)-W3T  =

6 (Uwl [*VT +“]) ~fi’([ ix ]))
FIOW about a lower bound ? We know if D = diag(d]  , dz),
then

1

[

fiw]sW1 s - ~,
ik% = inf 6dl ,d= ~W3T 1–W 3 T “

(s)

Now, recall a fundamental singular value property:

The maximum singular value of any matrix is bounded
below by the ma?imum singular value OJ its submatrices.

—
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Figure  2: “l’he Mixed-Sensitivity Problem.

Thus, in particular one has the following lemma:

Lemma 1:

6 ([ 3 ‘: D A[ :Y 1) ‘Aia+’*xi”02’’*}’11
(lo)
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A,,,., [X*X+ CA’*Y]  ~ A“xa.[x’x+y  ’v =5 ([$ 1)
(11)

i e., the lcmmri holds. If a < 1, the same logics yields

Using the above lemma (equation (9)-(1 2)), equation
finds its lower bound

2)

7)

(13)

Ccnnbining the results of eq.(7)  and eq.(13)  with the r-
bust stability requirement ‘( SUPA’nr > 1“, one gets the
following important relationship:

l’his relationship guarantees that jor the ntized sensitivity
setup depicted in Figure 2, the 2-block JIW synthesis is the
same as the K“, synihesin (OT IL(. ] swthesis)  iO ulithin 3
db (&) !

The singular value upper bound in this inequrdityis known
to be the so-called HmSrnall-Gain  Problem, which by all
nmans should be our first cut of the robust Km synthesis
problem. It replaces the complicated mathematical prob
lcm to an easy-tc-solve  Iim Mixed-Sensitivity problem.
BY achieving Illj, u, IIm less than –~, one hm achieved
K,,, % 1 - - the “real” robust perfo;];~ance.

Some important properties of the lIWcontrollers  are listed
below:

Property 1: The HWOptimal control cost function
7j,~, is all-p=, i.e., @[T~,”,l = I for all w E R.
I’his  property guarantees the exact loop shaping of
IIwcontrollcr.

I’ropcrty 2: An H m “sub-optimal” controller has order
equal to that of the augmented plant (n-state). An
Hm optimal controller can be computed having at
most (n - I )-states.

I’ropcrty 3: In any Weighted Mixed Sensitivity problem
formulation, the H m controller always cancels the
stable poles of the plant with its transmission ze-
ros. For some plants with low-damped poles/zeros,
this can potentially move the closed-loop poles into
RIIP and becomes unstable.

property  4: In the Weighted Mixed Sensitivity problem
formulation, any unstable pole of the plant inside
the specified control bandwidth will be shifted ap
proximately to its jw-axis  mirror image once the
feedback loop is closed with an Hm (or H2 ) con-
troller (similar to the “Cheap” I,QR control).

3 .  WEIGHTING STRATEGIES
H “ F O R M U L A T I O N

A Small-Gain problem setup shown in Figure 3 has 3 most
important signals (error, control energy, output) penalized
around the control loop with the cost function

[ 1w] s
mill W2 P’s <1 (15)
F(s) W3T ~

It catches most control system design issues such as sta-
bilit y, performance, and robustness in onc problem for-
mulation. Most of all, it also provides a vital trade-ofl
study among all these design issues. Namely, one can ad-
just each weighting function WI , Wa or W3 to come up a
better design that suits })is design requirement..
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F&um 3: The hlixed-Scmsitivit  y Problem.

This setup yields the following open loop transfer func-

tions:

(16)
I’his will be the input to the software hinf.m or hin-

fopt. m Chiang and Safonvo (1988-1994) to compute an

H  ‘ c o n t r o l l e r .

Minimizing the Hmnorrn of the “plant” P(s) with proper

weighting functions will result an all-pass closed loop
cost function, which implies that onc can get exact 100P
shaping to within 3 db out of any of the two-block synthe-
sis problems (ref. Section 2, Property 1):

1’1 = [ 1
Wls ;
Ws T “= [ J% 1 ’17)

The following list summarizes some important rules
(weighting strategies) associated with the Iimrobust  con-
trol synthesis, which is really a collection of facts from the
fundamental H m theory.

Rule # 1: For problem PI, an necessary condition for
an achievable Hmsolution  is

~(wl-l) + 5( W3-1) > I vfJ (18)

which means that the sum of the two weighting
function singular values must be larger than 1 for
all frequencies. This is simply due to the fmda-
mental feedback “limitation” S + 7’ = Z. ‘The

p. 3
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weighting WI controls tracking error and distur-
bance rejection. The weighting W3 controls over-
all system bandwidth, roll-off rate and robustness
srgriinst multiplicative uncertainty (see Figure 4).
Together they form a desired loop shaping of the
loop transfer function L = GF  along the frequency
range of interest.

Figurw  4: The standard weighting function WI &
W3 .

Rule # 2: For MIMO system, diagonal weighting furrc-
tion WI or W3 forces the system to be “decoupled”,
which may or may not be a desirable thing to do
depending on the physical problem (Ref. Section
4).

Rrrlo # 3: l’hc state-space Hmsoftware  currently coded
in Chiang and Safonov (1988-1994) requires that
the following conditions hold

rank(DIz) = riirn(tq)  < dim(yl  ) (19)

Trznk(D21  ) = riim(vz) < dim(rsI ) (20)
i.e., D12 must be a “tall” matrix with full col-

umn rank, and Z121 must be a ‘(fat” matrix with
full row rank, Therefore, always including a non-
trivial weighting W2 ensures that 1)12 condition
satisfies. For most engineering “tracking” control
problems, D21 is always square, hence satisfying
the D21 condition. }Iowever, there are cases like
the one showl~  in Section 4, one must use P.. for-
mulation to solve a particular flight control problcrn
without W3 weighting.

RUIC # 4: Always select stable and minimum phaw
weig}lting furrction, because

● Weighting functions are not stabilizable or
detectable

● Poles of weighting function WI always be-

comes part of the poles of the Hmcontro]lcr

Rule # 5: Preprocess the plant that hm jw-axis  zeros or
poles. Otherwise, it can cause the Hmalgorithms
to fail. ‘l%is is due to the fact that when Hmcost
function approaching “optimal”, the overall closed
loop system will have an irrational transfer function
with point discontinuities on the jw-axis at the of-
fending jw-axis  poles and zeros of the plant (Ref.
Safonov, 1986 for details). Solutions have been de-
veloped to deal with such situations:

● For plant hrxs jw-axis  poles, a simple bilinear
pole-shifting transform

(21)

can map the jw-axis  onto a RFIP circle 1’2,
while preserving the Hmnorrn of t}rc prob-
lcrn. After solving the problem on the circle
(instead of on jw-axis),  simply apply the ir,-
vcrsc bilinear transform to the Hmcontroller
to go back to the origirral domain (see Figure
5, Ref. Chiang and Safonov, 1992 for more
details).

Figure 5:

●

The bilinear pole-shifting transform (from
s – plane to 5 – plane).

For plant has jw-axis  zeros (any strictly
proper plant), attaching improper weighting
function W3

JV3(9) = C(Is+A)-]B  -t-l~+@nsn+...+  @ls+aO
(22)

can not only penalize plant roll-off rate
against unstructured uncertainty but also
keep the size of the augmented plant 1’(s)  un-
changed. ‘1’hc state-space form of this special
kirrd of plant augmentation has been implem-
ented in Chiang and Safonov  (1988-1994)
(augtf.m and augss.m) bas.d on the theory of
state-space resolvalrt.

Rrtlc  # 6: Use some engineering jrrdgement before de-
manding IImsoftware  to find a controller for you.
For example, one can not suppress sensitivity func-
tion to be less than one at vicinity of RI!}’ trans-
mission zeros. “1’his is one fundamental feedback
control limitation (not IIm).

Rule # 7: Balance the augment plant in equation (16)
for a better numerical condition so t}lat t}]e Rlccati
equation solver can be well-posed.

T}ris set of rules must be kept irr mind in every Hmcontro]
designer.

4, DESIGN EXAMPLES

The following aerospace design examples utilize this
Hm Mired-Sensitivity problem formulation described in
equation (17) to achieve their requirements.

Example # 1: Flig},t Control Bank ‘hum (T}lornpson
and Chiang, 1988). An interesting flight con-
trol problem that requires coordination between
bank angle 1#1 and stability yaw rate r. is solved
using the standard H ‘mixed sensitivity problem
formulation, where WI (s) = diag[w+, 0.01],

W2(S) = 2 * rfiog[~+~, ~+~], and no IV3

p. 4
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Figure 6: Hwmixed sensitivity design (bank turn).

Figure 7: Dank turn step response.

weighting! If one uses diagonal W] and W3 weight-
ing. on # and TS, the side-slip angle @ will diverge
quickly. Because in any airplane bank turn situ-
ation, rs = gtan#I/VT, decoupling @ from rs is
against the physics law. However, in other situation
like the Himat flight control problem, standard W]
and W3 arc necessary wcigbtings to decouple the 0
and a variables for a Direct I.,ift flight conhol  de-
sign (Safonov and Chiang, 19S8). See Figures 6 and
7 for II Wbank turn design.

Examj)lc # 2: Structure Vibration Suppression (Ba-
yard and Chiang, 1993) An integrated ID and ro-
bust control design methodology (MACSYN)  has
been developed in JPL (Bayard et al., 1994) In this
design, Hmrnixcd  sensitivity approach was again
used effectively to remove the most critical un-
wanted vibration modes. Weighting W2 is an over-
bound on all the identification and modeling errors.
Weighting WI is chosen to home in just the first 3
bending modes. It is a &state modal model trun-
cated from the full 100-state plant seen from the
disturbance actuator to the accelerometer. Figures
8 and 9 list the outstanding performance of this
approach.

Example # 3: Rigid Body Attitude Control (Chiang et
al,, 1993). Controlling rigid body dynamics is a
very common industrial task. From EM actua-
tor, spacecraft dynamics to any rotating object t}lat
needs to be precisely controlled, we have a double
integrator plant: &, where J is the polar rnon~ent
inertia. A spacecraft rigid body with J = 57OO has
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Figure 8: Hwmixcd sensitivity design (vibration
suppression).
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Figure 9: Disturbance rejection (open vs. closed
loop).
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been controlled using Hmrnixed sensitivity fornm-
lation. IIcre we have W3 = & and

where ~ = 100 is t}le DC gain that controls the
disturbance rejection, cs = 1/1.5 is the high fre-
quency gain that controls the peak overshoot re-
sponse, w. = 3 is the scnsit ivit y cross-over fre-
quency ,  {1 = (2 = 0.7 are the damping of the
poles and zeros. Additional attention needs to
pay for the jw-axis  plant poles (Rule # 5 !). We
sin~p]y shift the plant “A” matrix by 0.1 to the
rigl,t  (,49 = Ag + 0.1),  then shift back the fi-
Ilal IImcontroller  to the left by the same amount
(d .P = A=P – 0.1). This is equivalent to a bilin-
ear mapping with circle coefficients pi = –0.1 and
p2 = –co. This kind of mapping guarantees that
wc have a strictly proper controller that never am-
T>lifies scrrsor noise at high frequencies. Figure 10
shows the overall design.
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Figure  10: HO’mixed  sensitivity design (double in-
tegrator plant).

5.  CONCLUSION

HmMixed  Sensitivity problem formulation provides con-
trol designer the first clean cut of any complicated con-
trol problem. Mathematically, it has the advantage of by-
passing the ditllcult Kn, computation. I+om control de-
sign vjewpoint, it prov; des direct design knobs on the loop
transfer function, whit}) essentially solves the fnndarncntal
feedback issues like stability, tracking performance, distur-
bance rejection, and robustness against unstructured un-
certainty, ‘l’his paper documents t}lc basic theory, weight-
ing strategies and three nontrivial aerospace design ex-
amples to show the merits of this approach. More acf -
vanced technique such as Km-Synthesis (Chiang and Sa-
fonov, 1992; Safonov and Chiang, 1993) can then be in-
voked to focus on the parametric robustness of the prob
lcm, after the IImmixed  sensitivity problem is solved. A
similar K,,, tutorial paper like the onc presented here will
bc published elsewhere.

lhc research described in this paper w~q carried out by the
Jet Propulsion I,aboratory, California Institute of Technol-
ogy, under a cOlltract  with the National Aeronautics and
Space Administration.
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